Structure-toxicity analysis of type-2 alkenes: in vitro neurotoxicity.

نویسندگان

  • Richard M Lopachin
  • David S Barber
  • Brian C Geohagen
  • Terrence Gavin
  • Deke He
  • Soma Das
چکیده

Acrylamide (ACR) is a conjugated type-2 alkene that produces synaptic toxicity presumably by sulfhydryl adduction. The alpha,beta-unsaturated carbonyl of ACR is a soft electrophile and, therefore, adduction of nucleophilic thiol groups could occur through a conjugate (Michael) addition reaction. To address the mechanism of thiol adduct formation and corresponding neurotoxicological importance, we defined structure-toxicity relationships among a series of conjugated type-2 alkenes (1 microM-10mM), which included acrolein and methylvinyl ketone. Results show that exposure of rat striatal synaptosomes to these chemicals produced parallel, concentration-dependent neurotoxic effects that were correlated to loss of free sulfhydryl groups. Although differences in relative potency were evident, all conjugated analogs tested were equiefficacious with respect to maximal neurotoxicity achieved. In contrast, nonconjugated alkene or aldehyde congeners did not cause synaptosomal dysfunction or sulfhydryl loss. Acrolein and other alpha,beta-unsaturated carbonyls are bifunctional (electrophilic reactivity at the C-1 and C-3 positions) and could produce in vitro neurotoxicity by forming protein cross-links rather than thiol monoadducts. Immunoblot analysis detected slower migrating, presumably derivatized, synaptosomal proteins only at very high acrolein concentrations (>or= 25 mM). Exposure of synaptosomes to high concentrations of ACR (1M), N-ethylmaleimide (10mM), and methyl vinyl ketone (MVK) (100mM) did not alter the gel migration of synaptosomal proteins. Furthermore, hydralazine (1mM), which blocks the formation of protein cross-links, did not affect in vitro acrolein neurotoxicity. Thus, type-2-conjugated alkenes produced synaptosomal toxicity that was linked to a loss of thiol content. This is consistent with our hypothesis that the mechanism of ACR neurotoxicity involves formation of Michael adducts with protein sulfhydryl groups.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Aqueous extract of Zizyphus jujuba fruit attenuates glucose induced neurotoxicity in an in vitro model of diabetic neuropathy

Objective(s):The neuroprotective effect offruit aqueous extract of Ziziphus jujuba Lam on glucose-induced neurotoxicity in PC12 cells as an appropriate in vitro model of diabetic neuropathy was investigated. Materials and Methods: Cell viability was determined by the MTT assay. Cellular reactive oxygen species (ROS) generation was measured by DCFH-DA analysis. Cleaved caspase-3, a biochemical p...

متن کامل

Synaptosomal Toxicity and Nucleophilic Targets of 4-Hydroxy-2-Nonenal

4-Hydroxy-2-nonenal (HNE) is an aldehyde by-product of lipid peroxidation that is presumed to play a primary role in certain neuropathogenic states (e.g., Alzheimer disease, spinal cord trauma). Although the molecular mechanism of neurotoxicity is unknown, proteomic analyses (e.g., tandem mass spectrometry) have demonstrated that this soft electrophile preferentially forms Michael-type adducts ...

متن کامل

Molecular Mechanism of Acrylamide Neurotoxicity: Lessons Learned from Organic Chemistry

BACKGROUND Acrylamide (ACR) produces cumulative neurotoxicity in exposed humans and laboratory animals through a direct inhibitory effect on presynaptic function. OBJECTIVES In this review, we delineate how knowledge of chemistry provided an unprecedented understanding of the ACR neurotoxic mechanism. We also show how application of the hard and soft, acids and bases (HSAB) theory led to the ...

متن کامل

Neurotoxic mechanisms of electrophilic type-2 alkenes: soft soft interactions described by quantum mechanical parameters.

Conjugated Type-2 alkenes, such as acrylamide (ACR), are soft electrophiles that produce neurotoxicity by forming adducts with soft nucleophilic sulfhydryl groups on proteins. Soft-soft interactions are governed by frontier molecular orbital characteristics and can be defined by quantum mechanical parameters such as softness (sigma) and chemical potential (mu). The neurotoxic potency of ACR is ...

متن کامل

Chrysin Reduced Acrylamide-Induced Neurotoxicity in Both in vitro and in vivo Assessments

Background: Acrylamide (ACR) is a well-known industrial toxic chemical that produces neurotoxicity, which is characterized by progressive central and peripheral neuronal degeneration. Chrysin is a natural, biologically active flavonoid compound, which is commonly found in many plants. The antioxidant and neuroprotective properties of chrysin have been demonstrated. Methods: In this study, the ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Toxicological sciences : an official journal of the Society of Toxicology

دوره 95 1  شماره 

صفحات  -

تاریخ انتشار 2007